Introduction

- Tropical savannas cover about one third of the African land surface. At the wetter end of their distribution range, savannas transition into tropical forests.
- Their dynamics and transitions are determined by complex interactions between vegetation and environmental factors (e.g. climate and disturbance).
- Fire has an important ecological role influencing the vegetation distribution, and possibly in maintaining savannas and forests as alternative stable states.
- Dynamic Global Vegetation Models (DGVMs) are useful tools for simulating the distribution of global vegetation, but display high uncertainty in predicting tropical vegetation.
- This difficulty is often a consequence of the representation of the main ecological processes and feedbacks between biotic and abiotic factors [1].

Objectives

We compare the observed and modelled relationships of vegetation cover with climate and fire and use the current ecological understanding of the mechanisms driving the forest-savanna transition in Africa to:

- .. evaluate the outcomes of the LPJ-GUESS and JSBACH DGVM
- 2. assess which key ecological processes need to be included or improved within these models.

Material and Methods

Observational data

- Mean annual rainfall (MAR) (mm y⁻¹) and seasonality index (SI): from Tropical Rainfall Measuring Mission (TRMM 3B42). SI [2] describes the rainfall regimes as the contrast of monthly rainfall amount during the year.
- % Tree and Grass cover: from annual Terra MODIS Vegetation Continuous Fields product (MOD44B, V051)
- Average fire intervals (AFI) (y): from monthly MODIS MCD45A1 burnt area product. AFI=1/BA, where BA is the annual burnt area. We use $log_{10}(AFI)$.

Observations were averaged from 2000 to 2010 and interpolated to the resolution of LPJ-GUESS (0.5°) and of JSBACH (1.875°)

DGVMs: main characteristics, experimental setup and outputs

	LPJ-GUESS [3]	JSBACH [4,5]
Туре	Individual-processes-based	Processes-based
Earth System model (ESM)	EC-Earth, here used offline	Max Planck Institute (MPI) ESM, here used offline
Spatial Resolution	0.5°	1.875°
Fire algorithm	Simple fire module	Complex fire module (SPITFIRE)
Climate input data	CRU data (1901-2013)	MPI-ESM 1.1 (1850-2005)

DGVM outputs where averaged over the last 10 years of simulation. We identify:

- Savanna biome with deciduous tree and C₄ grass PFTs in LPJ-GUESS, with deciduous tree, shrub and C₄ grass/C₄ pasture PFTs in **JSBACH**
- Forest biome with evergreen tree PFTs in both models.

Vegetation-fire-climate interactions in sub-Saharan Africa:

evaluating and comparing dynamic global vegetation models Donatella D'Onofrio^{1,2}, Mara Baudena², Gitta Lasslop³, Lars Peter Nieradzik⁴ and Jost von Hardenberg¹

¹Institute of Atmospheric Sciences and Climate, National Research Council, Torino, Italy, ²Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands, ³Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany, ⁴Centre for Environmental and Climate Research, Lund University, Lund, Sweden

Analysis:

We analyse the relationships between observed and modelled biotic and single abiotic variables using Generalized Linear Models (GLMs) in three MAR intervals (dashed vertical lines in all figures), identified from changes in slope and spread of the relative tree-grass dominance, as in [6]:

Low MAR (R1): 0 – 590 mm y⁻¹ (upper limit: minimum of best fit with MAR) Intermediate MAR (R2): 590 mm y^{-1} – 1200 mm y^{-1} (upper limit: where the 90th quantile of T-G becomes positive

OBS. 0.5°

High MAR (R3): 1200 mm y⁻¹ – 2500 mm y⁻¹

White pixels: significant relationship. Numbers indicate the order of models obtained using Akaike the Information criterion.

Grass cover Average Fire interval

100

300

10

30

Average Fire Interval [y]

Fig. 2: Percentage of tree to grass minance (Tree cover – Grass cover) s a function of MAR at 0.5° res. ontinuous line: best GLM fit show to 1200 mm y⁻¹

Observed vegetation cover data were rescaled to represent crown cover as in models

Results and Discussion

National Research Council of Italy

Obs:Grasses are dominant, tree cover is low (Fig. 4.6.14.16). At 0.57 res., (fig. 3.51) (only grasses at 1.875° res., fig. 13,151) (grasses at 1.875° res., fig. 13,151) (grasses, but its frequency is (norderstimated (fig. 10.22). (Fig. 18,20) and there are no significant (resistant but cannot outcompete grasses because intolerant to shade. Forest cree stablishment is sourcestimated (fig. 10.22). (fig. 19,21).UP-GUESS: (Fig. 18,120) (grasses at 1.875° res. (fig. 13,151) (fig. 18,20) and have a larger spread (fig. 10.22). Tree depend on MAR is to strong (fig. (grasses still depend on MAR and grasses but its frequency is and grass cover strongly depend on fire (fig. 19,20).Obs: Wegetation is no longer (or tresistant but cannot outcompete grasses because intolerant to shade. Forest tree establishment is water- inimidel. LPI-GUESS: limited. LPI-GUESS: unlike obs., grass tree grass competition for water is suggesting that the mechanisms of tree grass competition for water is suggesting that the mechanisms of tree grass competition for water is suggesting that the grass-fire feedback. JSBACH: The closed canopies (SOW) prevent fires and in presence of frequent fire. (fig. 19,20). The grass-fire relationship (fig. 22).Des: Water is enough for the different seasonality and the grass-fire feedback. JSBACH: The different seasonality and the grass-fire feedback permint fires leads the model to produce and forest (fig. 9, but fww areas of open savanna (underestimation of grass cover is over estimated (fig. 11,12).Des: Water is enough for the different seasonality and the grass-fire feed	Obs. Vs DGVMS Possible ecological mechanisms Suggestion			
 Obs: Vegetation is no longer (or LPJ-GUESS: revising grasses (fig. 4); fires are frequent (Fig. 6). Trees depend only on MAR and grasses only on fire, but weakly (fig. 3-7), and there are no significant relations at 1.875° res. (fig. 13,15) LPJ-GUESS: Fire is the main process fore grasses, but its frequency is underestimated (fig. 10-12). Tree dependence on MAR is too strong (fig. 8) with steeper increase (fig. 9). Stronger than the grass-fire feedback is suggesting that the mechanisms of open savanna. (fig. 12,21): The grass-fire relation is more important than fire (fig. 8,10), whose invegetation cover and tree types (fig. 14,16). Tree and grass cover mainly depend on AFI and SI (fig. 3,5,13,15). LPJ-GUESS: Precipitation is more important than fire (fig. 8,10), whose savanna (underestimated (fig. 11,12). There is the coexistence of savanna and forests (fig. 9, 11) JSBACH: The is the coexistence of savanna cover science of savanna (underestimated (fig. 11,12). There is the coexistence of savanna and forests (fig. 9, 11) JSBACH: The fire leads the model to produce mainly closed canopies and not the observed open savanna (underestimated (fig. 11,12). There is the coexistence of savanna and forests (fig. 9, 11) JSBACH: The fire leads the model to produce mainly closed canopies and not the observed open savanna; underestimated (fig. 11,12). There is the coexistence of savanna and forests (fig. 9, 11) JSBACH: The fire leads the model to produce mainly closed canopies and not the observed open savanna; underestimated for the intermediate MAR range Dest savanna trees are overestimated 	cover is low (Fig. 4,6,14,16). At 0.5° res. they mainly depend on MAR (Fig. 3,5) (only grasses at 1.875° res., fig. 13,15); fires are rare (fig. 6,16). LPJ-GUESS : Quite good agreement with obs (fig. 8-12) JSBACH: Tree cover varies with MAR (Fig 18,19); grass cover increases with MAR but the dependence on AFI is stronger (Fig. 20,22); max tree cover is overestimated and grasses are	water-limited [6,7]; tree and grass R compete for water [8]. Fires are limited by fuel continuity [9]. JSBACH: Trees don't suffer c enough for water scarcity and w outcompete grasses too much. O Grasses are water limited as in fu obs. but the positive grass-fire relationship is stronger than in	evising tree stablishment, ree-grass ompetition for vater, relation f fire spread to	
Obs: Bimodality of savannas and forests in vegetation cover and tree types (fig. 4,6,14,16). Tree and grass cover mainly dependon AFI and SI (fig. 3,5,13,15).Obs: Water is enough for the development of the forest. The different seasonality and the positive vegetation-fire feedback permit forest-open savanna occurrence and transition [10]. LPJ- frequency is underestimated (fig. 11,12).Ouss: The absence of frequent fires leads the model to produce observed open savanna; fires process has a greater importance than SI in explaining the variation of both tree and grass cover (fig. 18,20); Grass cover is overestimated in presence of frequent fires (fig. 21) and in many points savanna trees are overestimatedObs: Water is enough for the development of the forest. The different seasonality and the positive vegetation-fire feedback permit forest-open savanna fires leads the model to produce observed open savanna; IsbaCH: The different seasonality the forest-open savanna the intermediate MAR rangeand shade- intolerance of savanna tree similar the intermediate MAR range	Obs: savanna is the predominant biomes (fig. 4); fires are frequent (Fig. 6). Trees depend only on MAR and grasses only on fire, but weakly (fig. 3- 7), and there are no significant relations at 1.875° res. (fig. 13,15) LPJ-GUESS : Fire is the main process for grasses, but its frequency is underestimated (fig. 10-12). Tree dependence on MAR is too strong (fig. 8) with steeper increase (fig. 9). Grasses still depend on MAR and have larger spread (fig. 10,11). JSBACH: Tree and grass covers strongly depend on fire (fig. 18,20) and have a larger spread (fig. 19,21); The grass-fire relation is	little) water limited. Fire, through the positive vegetation-fire feedback, is important in maintaining open canopies [8]. Savanna trees are fire resistant but cannot outcompete grasses because intolerant to shade. Forest tree establishment is water- limited. LPJ-GUESS : unlike obs., grass can dominate without frequent fires, suggesting that the mechanisms of tree-grass competition for water is stronger than the grass-fire feedback. JSBACH : The closed canopies (>50%) prevent fires and in presence of fire grasses have too much advantage compared to trees leading a steeper	revising grass establishme nt linked to water, grass- fire relationship in order to obtain more open savannas. JSBACH: Revisiting the grass- fire relationship,	
	Obs: Bimodality of savannas and forest in vegetation cover and tree types (fig 4,6,14,16). Tree and grass cover main dependon AFI and SI (fig. 3,5,13,15). LPJ-GUESS : Precipitation is mor important than fire (fig. 8,10), whos frequency is underestimated (fig. 11,12 There is the coexistence of savanna and forests (fig. 9), but few areas of ope savanna (underestimation of gras cover) (fig. 9, 11) JSBACH : The fir process has a greater importance tha SI in explaining the variation of bot tree and grass cover (fig. 18,20); Gras cover is overestimated in presence of frequent fires (fig. 21) and in man points savanna trees are overestimated	Obs: Water is enough for the development of the forest. The different seasonality and the positive vegetation-fire feedback permit forest-open savanna occurrence and transition [10]. LPJ- GUESS: The absence of frequent fires leads the model to produce mainly closed canopies and not the observed open savanna; JSBACH: The different seasonality and the grass-fire feedback permit the forest-open savanna occurrence, but there are similar problems as described above for the intermediate MAR range	and shade- intolerance of savanna trees LPJ- GUESS/JSBA CH : Revising fire process and savanna tree traits as suggested above for the intermediate	

Conclusions

- This comparative process-based analysis permits to easily highlight the main processes that determine the African tropical vegetation distribution in observation and models, suggesting possible improvements in models.
- LPJ-GUESS has good performance mostly at low precipitation, while in humid and mesic areas the fire process should be probably improved for obtaining more open savanna.
- JSBACH can reproduce the grass-fire feedback that maintains open savannas at intermediate and high precipitation, although is stronger than in observation, while at low precipitation it probably needs improvements especially in tree-grass competition for water
- This type of analysis allows to compare DGVMs in tropical areas, helping to understand their ability in representing key ecological processes and to improve earth system model simulations.

<u>References</u>		
[1] Baudena et al. (2015). Biogeosciences,12(6):1833–1848.	[6] D'Onofrio, von Hardenberg & Baudena (2018). Global Ecol. and Biogeogr, in press	
[2] Walsh & Lawler (1981). <i>Weather, 36</i> (7), 201–208	[7] Sankaran, Ratnam & Hanan (2004). Ecology Letters.	
[3] Smith, Prentice & Syke (2001). <i>Global Ecol. and Biogeogr. 10</i> (6), 621–637	[8] Sankaran, Hanan & Scholes (2005). <i>Nature, 438, 846-849</i>	
[4] Reick et al. (2013). J. Adv. Model. Earth Syst., 5, 459–482	[9] Archibald et al. (2009). Global Change Biology, 15, 613–630.	
[5] Lasslop, Thonick & Kloster (2014). J. Adv. Model. Earth Syst., 6, 740–755	[10] Staver, A. C., S. Archibald, and S. A. Levin (2011), <i>Science</i> , 334(6053), 230-232.	
/40-/55	334(0053), 230-232.	