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MAR range Best model
predictors 
(direction of 

dependence)

Discussion

Grass cover:
SI (-) and λw (+) 
(R2 = 0.58)

Tree cover:
MAR (+) 
(R2 = 0.2)

• Grass cover increases with
rainfall frequency (Fig. 3).

• This is analogous to
experimental research showing
grass being favoured by
decreasing precipitation
intensity α (and thus indirectly
by increasing λ) due root niche
partitioning [1]. Grasses are
better equipped then trees to
extract shallow soil water, and
have an advantage when rainfall
is more frequent [6]

• However, it is important to note
that a model with SI alone
explains a large variance of grass
cover (R2 = 0.54)

• Tree growth is limited by water
availability

Grass cover:
None

Tree cover:
αw (-)
(R2 = 0.33). 

• In general, in this range the
interaction between seasonality
and fire determines tropical
forest-TGB occurrence [2,7]

• Within TGBs, no models describe
grass cover with any significance
and tree cover can be described
by only αw (Fig. 4)

• The role of αw in influencing tree
cover in TGBs at this range is
difficult to interpret
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We analyse the relationships between TGB vegetation cover and explanatory variables, in the three
different MAR ranges, using Generalized Linear Models (GLMs) in a stepwise process using the Akaike
Information Criterion. Models including both αw and λw were excluded from consideration.
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• Savannas occupy about a fifth of the global land surface and store approximately 15% of the terrestrial
carbon. They also encompass about 85% of the global land area burnt annually. Taken together,
grassland and savannas are defined as Tropical Grassy Biomes (TGBs).

• Future projections of global climate models suggest an increased likelihood of high intensity rainfall
events and higher prevalence of dry periods, with these changes not necessarily associated with
corresponding changes to average annual rainfall quantities. This may have implications for savanna
structure.

• Previous work on the importance of rainfall intermittency to vegetation structure has been assessed in
small scale ecological studies [1], dynamic vegetation modelling studies [2] and continental analyses
focused on total tree cover only [3], with sometimes conflicting findings.

Introduction

Results and Discussion

Methods

• Our analysis confirms that rainfall intermittency appears to have a role in determining tree and grass
vegetation cover of tropical grassy biomes in sub-Saharan Africa.

• At different MAR ranges, these impacts vary, with, for example, grass cover positively associated with
rainfall frequency at low MAR locations but negatively in intermediate MAR areas.

• These contrasting findings could possibly be related to variable grass and tree root depths at different
MAR values, and may help explain contrasting findings from previous studies in relation to rainfall
intermittency.
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The role of rainfall intermittency for tropical vegetation

Objectives

We analyse the relationships between African (between 35° S and 15 ° N) observed % Tree cover and

% Grass Cover of TGBs with rainfall and fire intervals data averaged in time from 2000 to 2010 and in
space to the resolution of 0.5°. Tree cover and grass cover information was obtained from the annual
Terra MODIS Vegetation Continuous Fields product (MOD44B, V051), with 250 m resolution.

Observational data

Fig.2. Mean annual rainfall of 

Africa. Based on ESA CCI-LC 2010, 
areas with greater than 33% area 
influenced by humans and greater 
than 50% covered by shrublands
were excluded. References
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Based on the approach followed by [4] in assessing continental scale data at MAR ranges, we assess the
importance of rainfall intermittency for determining the emergence of the TGBs in sub-Saharan Africa
using both tree and grass cover data
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Fig.1 Relative tree-grass dominance (Tree cover-Grass cover 
from MODIS data at 0.5° res.) as a function of mean annual 
rainfall (MAR. Continuous line: best GLM fit, whose min. 
marks limit of first MAR range. Adapted from [4]
. 

• Recent work anyalysing continental scale MODIS data
on tree and grass cover in relation to precipitation and
fire, has shown that the relative dominance of trees and
grasses show clear changes in the dependence on mean
annual rainfall (Fig. 1) [4]. Three distinct ranges were
defined, where biome emergence was controlled by
different water-fire dynamics:

• I) Low MAR: 0 – 630 mm y-1

• II) Intermediate MAR: 630 – 1200 mm y-1

• III) High MAR: 1200 – 2500 mm y-1

Explanatory variables Data source and description

Mean Annual Rainfall (MAR) 
(mm y-1)

• From Tropical Rainfall Measuring Mission (TRMM 3B42), with 0.25°
resolution. 

• SI describes the rainfall regimes as the contrast of monthly rainfall 
amount during the year [5]. 

• αw and λw are calculated from the length and MAR of the wet 
season (MARw and Lw), such as MARw= αw�λw�Lw, where Lw is 
computed as the sum of the days of the months in which 
precipitation is greater than the 50% of annual precipitation divided 
by 12.

Rainfall Seasonality Index (SI)

Average Wet Season Rainfall 
Intensity (αw) (mm d-1)

Average Wet Season Rainfall 
Frequency (λw) (d-1)

Average Fire Frequency (AFI) (y) • From monthly MODIS MCD45A1 burnt area product, with 500 m 
resolution. AFI=1/BA, where BA is the annual burnt area. We use 
log10(AFI).

I

Fig.3. % Grass cover as a function of rainfall 

frequency (λw). Continuous lines are the best model fit 
for grass, computed with the median value of SI (black 
line), the 95th and 5th percentiles of SI (red lines). The 
colour bar shows the range of values for SI

MAR range Best model
predictors
(direction of 

dependence)

Discussion

Grass cover:
AFI (-) and λw (-)
(R2 = 0.37)

Tree cover:
λw (+, parabolic 
dependence)
(R2 = 0.39)

• For grasses, there is a negative
relationship between both AFI
and λw (Fig. 5). A model that
includes λw alone explains R2 =
0.27 of grass cover however

• Tree cover is favoured by
increasing rainfall frequency (Fig.
6)

• At this intermediate MAR, there
is overlap between roots of
grasses and trees at shallow
depths [6], differently than in )

• This change in root depth
between I and II [6] could
explain our observation that
rainfall frequency favours trees
above grasses at this range (and
in line with earlier observational
findings [3]).

• In turn, this highlights the
importance of the vegetation-
fire feedback in limiting woody
encroachment [e.g. 7; 8]; indeed
AFI and λw are negatively
correlated in this MAR range
(r = - 0.33), suggesting a more
frequent rainfall pattern reduces
the prevalence of fire

Low rainfall range

Fig.5. % Grass cover as a function of rainfall 

frequency (λw). Continuous lines are the best model fit 
for grass, computed with the median value of AFI 
(black line), the 95th and 5th percentiles of AFI (red 
lines). The colour bar shows the range of values for AFI

Intermediate rainfall rangeII

Fig.6. % Tree cover as a function of rainfall frequency 

(λw). Continuous lines is the best model fit

High rainfall rangeIII

Fig. 4. % Tree cover as a function of rainfall 

intensity (αw). Continuous lines is the best model fit

(3)

We identify TGB pixels as cells with more then 50% of their area is flagged on the ESA CCI-LC map as 
deciduous trees and grasslands
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